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The axisymmetric problem of the theory of elasticity is considered for a body 
bounded by two spherical and two conical surfaces. The results of [X, 21 are 
used to perform an asymptotic analysis of the stress-strain state of the shell. Meth- 

ods developed in 13, 41 are used to reduce the boundary value problem to infinite 

systems. 

2, We consider an elastic conical shell, using the spherical coordinate system 

r, 6, ‘p (ra<r Qra Ol<O<&, 0-5T ;$W 

and assume that the conditions 
ci, = 0, r 0 re = 0.1) 

hold on the conical boundaries (8 = 8r, 0 = 0,) . 
Using the results of [I, 21. we apply the method of homogeneous solutions to express 

the stresses and displacements in the form 

ur = Ut ue = uoo+r 
k=l k-1 

m 

6, = S,“+ 2GrA~*~ Ckr ‘kQrk 

k=l 

m 

To = 3oo + 2Cr+ z: ‘kr "Qelr, d =3* Q Q + 2Gr-'fz i C,r 'kQQk 
k=l k-4 

k=l 

ur CA I c,r-’ f4 (1 - Y) cm 0 - (t - 2v) (cos 0, -I- cos O,)] -- .4 cos 0 

uo o = C,r-l I(3 - 4~) sin 6 - (i - Zv) (1 f cus 9, COJ 8,) csc 6 -/- 

+ (1 - 2~) (cos 0, -/I ros 4) cfg 81 I_ n sin 8 

o,.” = 2GCory2 12 (2 - Y) cos 0 - (4 - 2-v) (cos 0, -t cos $)I 
4” _1 -2 (1 - av) CC,P [cos 0 - (1 -/- COB !I, cos 0,) ctg 0 csc 0 -i_ 

-j- (cos 0, “r (‘es 0,) clg” I)] 

w 

(1.3) 

($4 

( I .Aj 
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In the formulas (1.2) - (1.9) pfs) (cos 4) and Yin (coi cp) denote the tegendre funct- 
ions of the fiit and second kind. respectively, ‘pl (a) = ss + z + 2~ - ?Ja, G and v are 

elastic constants, A, C, and Ch- are arbitrary constants and z;i are the complex zeros 
of the function 

A (z) =: -(z - ‘/~)‘cp12(~)U~:~(OL, 02) I$$@, fh) - 

- (2 + ‘/.$*cpl*.a(-- z) ug”;l”i; (01, Ocf uy; @I,&) + 

440 - Y)Z(Z - 'iz)"(Pl(')I~!S;j~(Bl,O~) ~~~,g~~~~~~~0~,~).~ 

+ ctg e,$$ (01, 02)] - 4 (1- Y) 2 (z -!- ‘,‘$ YI (-- z) D 2;; te,, es) x 

x [ctg 8202+,/, to*0 (01, 9,) + ct,g 0, qi;“‘, (OX, 03) i 

+ 16 (1 - ~2) zs ctg 01 ctg 02 DE$i f.$$ (01% 82) - ji.iO) 

- (z"- (0.1) 
'/d~~l(z~ ql(- :) ff1,_sj, t@J* 02) &+I,, (r*o) (81, 82) -j- 

+ 0~~~~(81,e2)D~~-p;rsf,(03, e?)t - :! (32-- ',~)q~(z)ql(- 2)csc&esc02 

The terms u,“, u80 and ‘& appearing in (1.2) and (1.3) correspond to the real zeros 
a01 = -0.5. and 202 = 0.5 of the function A (3). 

2, We now turn our attention to the pattern of the state of stress described by the 
homogeneous solutions (1.2) - (1.8). 

We first consider the relationship connecting the homogeneous solutions with the prin- 
cipal stress vector P acting at the cross section r = con&. We have 

5. 
P = &trs 

s 
(s2 cos 0 - t,s sin 9) sin 0 d0 tw 

% 
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(2.2) 

Inserting (1.3) into (2.1) we obtain 

P = COY0 + r’/* jj c,r ZkYk 
k=l 

y. = -4nG (cm OS - cos e,) (co9 81 + 2Y cos 8, cos 08 + cosa e,) 

(1 
Yk = 4nC 

s 
(Qrk cos e - T, ain e) sin e d8 (2.3) 

81 
We shall show that all Yr (k = I,& 3, . ..) are equal to zero. Consider the following 
boundary value problem 

d =r 

rk--?L Q Zk-V2 

r 1 r0' $5 = ‘1 T* (r = 0) 

rk-'ff' Qr,, z,, z.z r;k+' Ts 
f2.4) 

5 =r 
r 

(r = n) 
a 

Assuming that the solutions of (2.4) are unique, we obtain them by setting in (1.2) and 
(1.3) Cr = 0 for all k # s and C, = 1. The principal vector corresponding to the state 
of stress of the problem (2.4) has the form 

p, 
= &&I S+“r 

YP (2.5) 

By virtue of the condition that the problem of the theory of elasticity has a solution, the 
vector P, cannot depend on T, consequently P, = 0 and YS = 0. Thus the complex 
zeros zk have a co~es~nding state of stress which is self-eq~~brat~~g at each cross 
section r = con.& We obtain the following final expression for the principal vector: 

p = YOC, (2.6) 

Further investigation will be conducted under the assumption that the difference 2e= 
=z @P - 9, is small. Let us therefore set Or = B. - E and 6, = B. + E assume that the 

parameter s is small and that 0 < & < O. < Ez < rlzn (t;r and Ez are some constants). 
We note ihat the value On = r/*n corresponds to a plate of variable thickness and will 

not be considered here. 
It was shown in p] that the roots 

into three groups, according to the 
1. 201 = -0.5, z%Jz = 0.5 

2. Zir = 8 -“’ b-1, + =lk + . ..) 

a__: + 3 (1 - v”) ctga ec = 0 

of the characteristic equation (1.10) can be divided 
character of their asymptotic behavior when a --) 0 

(2.7) 

(k = 1, 2, 3, ;) 

'lk = (40 ~_,~)-l[ 24 (1 - va) ct@ 00 + 5 (9 - 8v)] (2.3) 

3. Zk = E-I [b_lk + 0 (Er)] 6 = 5, 6, . ..) (2.9) 
sin= 2b_,, - 4b_,,a = 0 

we set for convenience a_lk = rk, dlk = pk and bAk = b, (I = k - 4). The SOlUtiOIl(l.4) 

and (1.5) corresponds to the roots of the first group. It has been shown that this solution 
can be used to remove the principal stress vector from the end faces. We note that the 
root POT = 0.5 corresponds to translation of the cone as a rigid body. 

Below we shall show that the zeros of the second and third group correspond to tne 
solutions of the edge effect with varying stress-strain state indices. 

Let us transform the solution (I, 2), (1.3) taking into account the smallness of a and 
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the formulas (2.7) to (2.9). setting8 = % + eq and r = *IP* --1 B q d 1 and expanding 
all expressiom contained in (l-4) - (1. ‘7) in terms of s in accordance with the goUpS 

of zeros given above, we obtain 

u =1c r co) + u,(l) + UP@), 

d =‘* @) + d,Qf + o,@), 

U@ = uef@ + .&I) + .@f*) 

as = ?J@(@) + ($Q + $@’ (2.10) 

a m =’ q&j- q’l’ + b$‘, 7,@ = Zre(@) + Qf + Q) 

where 
a SJI = ~ICOP-~ I-- 2 00s 00 _t 4 (1 - v) qe sin e. + 0 (ez)j - A fcos 00 - q sine0 + 0 fe*)j 

fdof L rlC~p_~ [--- 2 (1. - v) sin 80 - 2 (2 - v) eq co9 t30 -t_ 0 {e”)] +A [sin 00 + eq cos 60 +-o(@)] 

a r to) = C&P-~ [ 4 (1 -j- Y) cos ec - 4 (2 - Y) eq sin 80 +- o (~2) j 

cr,@) = cd+-w 12 (1 - XV) (172 - 1) cos e. + o +f+)] 

Q,(O) =- CoGp-2 [8 (1 -- 2v) co9 e. sin’-2 e. - 4 (4, - 2~) eq (i + co9 eo)3 sinT8 80 + 0 (es)] 

~~~~~~ = CoGp-W [2 (1 - 2~) (9” - 1) sin e. + o (e)] (2.11) 

4 

a.8 0) = r1 (E/pp 2 Akurk(*), r Up = r1q-J 43 
i 

A, U$) 
k=l k-1 

4 4 

is 0) = Gp-'/" 2 Ak~rk(l), 
r 

@f x(&i+ 2 &~~~(lf (2.12) 
k=l k=1 

4 

Q (1) 
Q 

= &J-*i'z l;z Ak5Qk(l), I$" = Gp-’ (~/p)“” i A,&$) 
k=I k=l 

urk(If =c--12 (1 - vy (qctk + YU~--~ ctg Ba) ctg e. + s”q2 (v - 2) ~,y, - 

- 3 (1 - vz) q (2a$, - 3) ctg e. - 6v (i - v”) ~~-y$ &g2 e,] + 

3_ e (2 (7v - 2) ak2fik - 42 q (1 - v2) & ctg $0 - 3 (1 - va) ak-l[(4v - 5) q - 

- 6~ ctg 001 ctg 00 - 6 (1 - v2) ak ctg i30 [I-- 4/s (Y + 2) ctg i30 - 

-(~--_4)(y~~--~+2~~tgeo~~+ ..~exp(e+~a~Inp) 

qp= <12(1 - vyctgeo + .?3{48(1 -vB)ak-l & ctg eo- [16(1 -v~)ctgOo- 

-6(i+v} v(~*-~1)etgOoi_(4v-~)tgOoJa~2t12(1-vy’ff~kctgeo- 

-6(1 - ~2) (2vq + 1 - Y) ctgo- 0~3 + EK 16 (i- ~2) pk [i - (2v?f + i.- Y) ctg eo] ctg &r + 

+ 48 (1- vy a,-182 ctg 00 - [ 16 (1 - v?) ctg 00 - 6~ (1 +- v) (q2 - 1) ctg e. + 

4” (4y - 5) t.g 601 akZ@, + 2 (a + v) (1 - 2~) (qa - 1) ag ctg 0”) + . ..) exp (8+ czk In p) 

Q(l) = 4 (i + Y)C ctg e. (-- 6qat + 6~“~ [q (2 - Y - a,&) dy + 

+(~-vY”)u-‘ctgOoJ+s(6(2~--_~~-6)~R~k-3(1-2v~~- 

- 3qak2pk + [ tg 00 + (3vq2 - 6qv + 2 - 6q - Y) ctg 601 ak2) + . . . ) exp (e-“* ak In P) 

Q$) = 3 fl -i_ Y) {q - 1) G ctg e. (4 (q + I) etg 60 13 {I - Y%) ctg 60 -J/s (Zv - 1) + 

+ 113 ~~~~~~~~ + s”z (4 (q -t- iI ctg en [3 (I-+) & ctg 00 + l/8 vak2 fit - l/8 (2~ -- I) f&l4 + 

+ E 132 (a - v*) (3q + 2) ak-lpk ctg” BO - “p [S (1. - V) ($9~ - 7) ctg” t% + (Fjs - 63~ - 
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~~pkfl) = 2G (12fl i_ Y) [(f --.-Y”) (.lgORo-- v7par2] ctg6o+&f12 (1-t Y) x 

x a, [(I - v2) ctg 00 - vqrlrZ] ctg Oa - 12 (1 + v) (1 - 2Y) T&z, ctg 60) + 

+ E (48 (1 + v) (1 - Y’) akml& ctg2 60 + (1 + v) [1 - 8 (1 - 2~) ctgZ 60 + 

t_ 6~ (1 + v) (q2-- 1) ctg3 601 uks + 12 (1 + Y) ukpI, (2~ .- vq + 2~) x 

x ctg 00 + 6 (1 - Y’) (i-t_ Y) ak ctg2 00 - 6v (1 + v) qak2& ctg &I- 

- 3 (1 + v) [4 (I- Y’) (tj + 1) ctg’ 60 _?r (1 -v) (2~ -i)] ctgb$ + ..,> exp (E-“~x~ In P) 

z’rehz 0) = 6C (1 -t Y) ,xh. (rf’ -- ) 1 ct 00 <2a*2 + e’il (2r,& -- 3) elk + g 

+ e]il~l$~ + (r, - $/3 r) ctg (&).LY~% + 6v - 51 + . ..> exp (~-“~ct~ In p) 
co 

a 12) -% r = r,ep 2 c, [(I - k) S,F, (q) + (1 + 2) 8,-v,“(q)] exp (F-‘61 Inp) 
243 

l+)(2) = 
m 

-_ ~lep-‘J2 2 B, [(i f 3k) J’,’ (9 + (1 + k) hl-” F” (q)] exp (8-l 6, In P) 
1=1 

Q) 
G (2) = 2&p/l 

I 
2 BIF,” (q) exp (~~‘8~ In p) 
l==l 

02 

42) = 2(+-s 2 L’,6,” F, (q) exp (~~8~ Inp) (2.14: 

%I 
t“) = _ &3,-% 2 BIF,’ (7) exp (E-%~ In p) 

1=1 

Here Ar and Bl are new unknown constants and IC = (1 - ZY)-l; Fr (q) in (2.14) de- 
note the Papkovich functions, 

F, (9) = (8,-l sin 6, + co9 dr) cos S, 11 + tj sin 6, sin 6,9 (I = 1, 3, ..) (2.15) 

F, (11) = (sin 6, - aI-1 cos FSL) sin 6,q -j- n cos 8, cos Et171 (E = 2, 4,...) (2.16) 

3, We consider the problem of removing the stresses from the end surfaces of the 
shell. Let the folIowing stresses be prescribed when r = rS (s = 1, 2) 

ep = fr, (6)7 r,, = ias (6) (3.1) 

Functions fjs (0) satisfy the conditions of equilibrium 

230x2 ez(j~~ cos 0 

02 

s I 
’ --/ial sin0)sin 6d6 = Znr~? (1~2 cos 0 - jt2 sin 0) sin O&l = P (3.2) 

0% +Ji 
where P is the principal stress vector acting in any cross section r = conat. 

As we have shown before, the non-self-equi~brating part of the stresses (3.1) can be 
removed using the penetrating solution (1.4) and (1.5) with the constant Co and the 
principal stress vector P connected by Eq. (2.6). Below we shall assume that P = 0. 
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We shall seek the solution in the form (1.2). (1.3). According to the assumption made 
above that C, = 0. The arbitrary constants ch. whose variations are assumed independent, 
will be determined using as in f3. 41, the Lagrange’s variational principle. 

Since the homogeneous solutions satisfy the equations of equilibrium and the boundary 
conditions on the conical surface, the variational principle assumes the following form 

rr i &J (3.3) 
ST1 01 

!,(;‘+ - jr,) 6~~ -I- Nre - fsJ 6~al,,=~~ sin 6 d6 = 0 

Equating to zero the coefficients accompanying the independent variations 6Ck, we ob- 

tain the following infinite system: 

s mjkClc = oi (j = 2, 2, 3, . ..) 

where 
ii=1 

m,;., = (?I_’ -++ p~zjtz,, 
) \; (Q,,v,j + T,~oj) sin&M 
ii, 

(3.h) 

gj = $ !,,;j+” y (j,.l; & fJIDi) sin 0(/O (, .I?’ 
(3.6) 

s=r QI 

It can be shown that this system is positive definite in the energy space Hi and there- 
fore has a solution whenever physically meaningful conditions are imposed on its right- 
hand side. 

Using the smallness of the shell thickness parameter 2~ -z Bz - 6,, we can construct 
an asymptotic solution of (3.4). We begin by sharpening the assumptions concerning the 
external load. 

Assume that f.,, - 1 . Then the assumption that or and T,o corresponding to the 
roots of the second group are of different order (OF’) - 1, ~$t,’ - 1/q implies that the 

choice of the order of . fc, must be guided by the following considerations. Using the 

formulas (2.13) and (2.14) and the fact that 1;;; (21) = (3, we obtain 
1 

I 

4 

t,.,,dq = - 16 G (1 + y) p-‘/? ctn 6,,e’li Y 
'1 

3 LJ 
i;El 

Writing now the tangential stresses prescribed at the 

.-lllirtiL3 esp (C’/ ctic In p) 

boundary in the form 

f2c(‘?) = j*,: -- j$) _ _ 

(3.7) 

(XYJ 

we find that the asymptotic formula (3.7) leads us to the necessary assumption that !$; 

is of the order of c’“, while /$“,) may be of the same order as fls, i.e. /it) - 1. 
Further, using the formulas (2.13) and (2.14) we seek the constants ~1 I, and R! in the 

Taking into account the order of the stresses prescribed at the boundary, we now use 
the variational principle to obtain the following system of equations for Ak;n and BOO: 

2 njh..4, = ai (; = 1, 2, 3, 4 . ..) (3.10) 

k-1 
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co 

2 i?,$$, = b, (t = 1, 3, . ..). 5 g,A, = b, (t = 2, 4, . ..) (3.11) 

z=i, 3 z=2,4 

njk 
5: 16 G (1 - Y”) Ub2 (Uj - 4, ctg2 eo (3.12) 

g,, =4G8,2(1 -22/3sin26,) i ps3exp (‘:6,/clnp,) 

b, - i p:i2 exp ($.lnp,) f ffls [(I - k) 6,~~ (11) + (I + k) $ - 
S==l -1 

dq (t, 1 = 1, 3, . ..) 

For t, I = 2,4, . . . the corresponding expressions for fit1 are obtained when replacing 
in the above formulas cos 61 by sin 61 and sin 61 by - ros 6, respectively. 

The structure of the system obtained enables us to conclude that the unknowns AR0 

corresponding to the second group of zeros and the unknowns Bko corresponding to the 

third group of zeros, can be obtained independently. 

The process of determining 21 ki and Bk; ii =: 1, 2, . . .)can invariably be reduced to in- 
verting identical matrices coinciding with the matrices of (3.10) and (3.11). 

It should be noted that the systems (3.11) have been already encountered in the theory 

of thick plates [5, 61 and served repeatedly as the basis of numerical analysis of various 
problems. 

The system (3. lo), (3.11) becomes considerably simplified when the state of stress 
of a semi-infinite cone (p! =: 1, pz - f.c_) or of a cone with an apex tpz == 1, p1 = 0). 

is considered. 

In the first case all unknowns corresponding to the zeros for which RecLk > II and 
ReS, > 0, should be made equal to zero. In the second case the boundedness of the 
solution at the apex suggests equating to zero those unknowns, for which I~CQ < 0 and 
Re6, < 0. Both cases yield systems which are formally identical 

(j = 1, 2) (3.13) 

k-=1 

5 g,f (r’)l’l, = b,(O) (t = 1, 2, . ..) 

Z=l 

The coefficients and the right-hand sides of (3.13) are easily obtained from the corres- 
ponding coefficients and right-hand sides of (3.10) and (3.11) by setting p, = 1 and 
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PZ - 00 in the first case, and p1 = 0 and pa = i in the second case. 
Let us now clarify the pattern of the state of stress corresponding to the zeros of the 

second and the third group. We set, for simplicity, p1 = 0 and p0 = i (r = pr,) and 
compute the bending moment and the shearing force for each group of solutions. We 
have 

M = r.2 “i r 
Gr sin (6 - 60) -qs[i--cos(0-90)]}sin6d6= 

a1 
1 

z 6% a sin 60 
2 s 

s,dr + o (9) (3.14) 

-1 
0: 1 

Q = yq2 s [ 0, sin (6 - &) + z,, co9 (e - eo)l sin ede = er’2 sin 60 
s 

r,sdtl + 0 (e’) 
s1 -1 

Inserting now the expressions for the stresses. we obtain 
4 

Ml = - 32 G (1 + v) eOp-‘jr r2 cos 80 2 Akoaka exp (e-‘/I ale In p) + o(c"/~) 
k==l 

k=l 

MZ = o (es), Qn = o (es) (3.16) 

Thus the principal parts of the bending moment and the shearing force determine the 

solution for the second group. 
In conclusion we note that the asymptotic method developed in this paper can be used 

to remove the stresses from the end faces of the boundary of a conical shell. From the 

conical part of the boundary the stresses can be removed by constructing applied theories 

with help of the methods and examples given in [3, 41, and this alone could merit a 

special study. The removal could be realized by solving the problem of the theory of 
elasticity for an infinite conical shell with the help of the Mellin transformation. 
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